张顺平
-
博士生导师
- 性别:男
- 毕业院校:中国科学院物理研究所
- 学历:研究生毕业
- 所在单位:物理科学与技术学院
- 入职时间: 2014-12-04
- 学科:
光学
- 办公地点:物理学院新楼D-211
- 联系方式:027-68752481转8055
- 电子邮箱:8b31e8353e696d2e4476b2476dd850e5a69a9241b4cbe978c01a6c262eb5ced10ead0a6d73e8161f0aa83864e558c4b87674c36de4e41701f9099557d7b9c601e3fd3ec5e39ffd43f574309e8a04cef9b8a4efafdd680ef2684eca246107b6e8c2c79389623658fb87ae1c9dc1ea701236e3d126a121f40f5f7ec4a4b0080e86
访问量:
-
[1].
Photophysical and Photochemical Process after Light Absorption in Metals.
Photonics Insights.
3, C01 (2024).
-
[2].
Transverse Spin–Orbit Interaction of Light.
Nano Lett.
24, 10783-10789 (2024).
-
[3].
Quantifying the Ultimate Limit of Plasmonic near-Field Enhancement.
Nat. Commun.
15, 8803 (2024).
-
[4].
Light-Emitting Plasmonic Tunneling Junctions: Current Status and Perspectives.
ACS Nano.
18, 2541-2551 (2024).
-
[5].
Extraordinary Five-Wave Mixing in a Zinc Oxide Microwire on a Au Film.
Nano Lett.
23 (15), 6966-6972 (2023).
-
[6].
How to Obtain the Correct Rabi Splitting in a Subwavelength Interacting System.
Nano Lett.
23 (2), 444-450 (2023).
-
[7].
Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications.
ACS Nano.
16 (12), 19789-19809 (2022).
-
[8].
Phononic Cavity Optomechanics of Atomically Thin Crystal in Plasmonic Nanocavity.
ACS Nano.
16 (8), 12711–12719 (2022).
-
[9].
Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers.
Nat. Sci. Rev.
9 (6), nwab135 (2022).
-
[10].
Merging Bound States in the Continuum at Off-High Symmetry Points.
Phys. Rev. Lett.
126.
117402.
2021.
-
[11].
Understanding the Lineshape of Surface Enhanced Infrared Absorption Spectra.
Nat. Sci. Rev.
8.
nwaa240.
2021.
-
[12].
Efficient Frequency Mixing of Guided Surface Waves by Atomically Thin Nonlinear Crystals.
Nano Lett.
20.
7956-7963.
2020.
-
[13].
Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS2 by Local Chirality in Single Plasmonic Nanocavity.
Nano Lett.
20.
4953-4959.
2020.
-
[14].
Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy.
Nano Lett.
20.
3499-3505.
2020.
-
[15].
Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping.
ACS Nano.
13.
14041-14047.
2019.
-
[16].
Routing a Chiral Raman Signal Based on Spin-Orbit Interaction of Light.
Phys. Rev. Lett.
123.
183903.
2019.
-
[17].
Simultaneous Surface-Enhanced Resonant Raman and Fluorescence Spectroscopy of Monolayer MoSe2: Determination of Ultrafast Decay Rates in Nanometer Dimension.
Nano Lett.
19.
6284-6291.
2019.
-
[18].
Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions.
Nano Lett.
19.
3838-3845.
2019.
-
[19].
Light-emitting plexciton: Exploiting plasmon–exciton interaction in the intermediate coupling regime.
ACS Nano.
12.
10393-10402.
2018.
-
[20].
Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe.
Light: Sci. Appl.
7.
56.
2018.
-
[21].
Probing of sub-picometer vertical differential resolutions using cavity plasmons.
Nat. Commun.
9.
801.
2018.
-
[22].
Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires.
Nano Lett.
17.
7803-7808.
2017.
-
[23].
Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2.
Nano Lett.
17.
3809-3814.
2017.
-
[24].
Single Nanoparticle Couplers for Plasmonic Waveguides.
Small.
10.
4264-4269.
2014.
-
[25].
Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force.
ACS Nano.
8
(1).
701-708.
2013.
-
[26].
Highly Tunable Propagating Surface Plasmons on Supported Silver Nanowires.
Proc. Natl. Acad. Sci. USA.
110
(12).
4494-4499.
2013.
-
[27].
Optimizing Substrate-Mediated Plasmon Coupling toward High-Performance Plasmonic Nanowire Waveguides.
ACS Nano.
6.
8128-8135.
2012.
-
[28].
Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide.
Nano Lett.
12
(4).
2088-2094.
2012.
-
[29].
Chiral Surface Plasmon Polaritons on Metallic Nanowires.
Phys. Rev. Lett.
107
(9).
096801.
2011.
-
[30].
Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed.
Nano Lett.
11
(4).
1657-1663.
2011.